

Published on Web 02/07/2003

New Cyanometalate Building Units: Synthesis and Characterization of [Re(CN)₇]³⁻ and [Re(CN)₈]³⁻

Miriam V. Bennett and Jeffrey R. Long*

Department of Chemistry, University of California, Berkeley, California 94720-1460

Received December 18, 2002; E-mail: jlong@cchem.berkeley.edu

The past decade has witnessed an extraordinary revival of transition metal-cyanide chemistry, fueled largely by interest in the magnetic and photomagnetic properties of cyano-bridged solids¹ and molecules.² The preparations for many of these compounds rely upon the use of homoleptic cyanometalate complexes as building units. To give but two examples, octahedral $[M(CN)_6]^{n-1}$ complexes are employed in the synthesis of cubic Prussian bluetype solids with adjustable magnetic properties, ^{1a-f,h,i} while $[M(CN)_8]^{3-}$ (M = Mo, W) complexes can be incorporated into high-nuclearity clusters with ground states of record high spin.2e,f Thus, the synthesis of new cyanometalate complexes stands as a potent means of extending the range of accessible properties in cyano-bridged compounds.3 Moreover, second- and third-row transition-metal complexes, which have been less thoroughly investigated, can be expected to deliver stronger magnetic exchange coupling and greater magnetic anisotropy to the materials.⁴ With these factors in mind, we chose to explore the synthesis of new homoleptic rhenium-cyanide complexes.

To date, only one such complex has been structurally verified: pentagonal bipyramidal $[\text{Re}(\text{CN})_7]^{4-.5}$ The most oft-cited preparation for this diamagnetic molecule is somewhat inconvenient, involving the reaction between K₂[ReCl₆] and KCN at 250 °C in a KSeCN melt.⁶ Although the early literature contains many purported examples of other rhenium–cyanide complexes, nearly all of these formulations are now in doubt,⁶ with the possible exception of $[\text{Re}(\text{CN})_6]^{5-.7}$ Here, we report the syntheses, structures, and spectral properties of two additional species: $[\text{Re}(\text{CN})_7]^{3-}$ and $[\text{Re}(\text{CN})_8]^{3-}$.

The synthesis of $[\text{Re}(\text{CN})_7]^{3-}$ proceeds through a simple ligand exchange reaction. Under a pure dinitrogen atmosphere, solid (Bu₄N)CN (1.2 g, 4.5 mmol) was added to a solution of (Bu₄N)₂-[ReCl₆]⁸ (0.55 g, 0.62 mmol) in 2.0 mL of DMF. The mixture was stirred and heated at 85 °C for 3 days to give a yellow solid, which was collected by filtration and washed with successive aliquots of THF (3 × 10 mL) and ether (3 × 5 mL). Diffusion of THF vapor into a concentrated DMF solution of the solid afforded 0.52 g (76%) of (Bu₄N)₃[Re(CN)₇] (1) as yellow block-shaped crystals.⁹ Compound 1 is stable in air both in the solid state and in nonprotic solvents, but gradually decomposes over the course of several days in oxygenated water. In contrast, [Re(CN)₇]⁴⁻ rapidly oxidizes in air.⁶ The cyclic voltammogram of 1 in acetonitrile displays a [Re(CN)₇]^{3-/4-} redox couple centered at $E_{1/2} = -1.06$ V ($\Delta E_p =$ 140 mV) versus Cp₂Fe^{0/1+.10}

X-ray analysis¹¹ of a single crystal of **1** revealed $[\text{Re}(\text{CN})_7]^{3-}$ to adopt the pentagonal bipyramidal geometry depicted in Figure 1. The complex closely approaches D_{5h} symmetry, with the carbon atoms of the five equatorial cyanide ligands (C(3)–C(7)) forming a nearly perfect equilateral pentagon. Its Re–C distances, which fall within the range 2.064(10)–2.123(11) Å, are comparable to those observed for $[\text{Re}(\text{CN})_7]^{4-}$ in K₄[Re(CN)₇]•2H₂O (2.077(3)– 2.099(6) Å).⁵

Figure 1. Structure of a pentagonal bipyramidal $[Re(CN)_7]^{3-}$ complex in 1; ellipsoids are drawn at the 40% probability level. Selected mean interatomic distances (Å) and angles (deg) for two crystallographically independent complexes: Re-C 2.09(2), C-N 1.17(1), Ceq-Re-Ceq 72.4(9), Cax-Re-Ceq 90(4), Cax-Re-Cax 178.6(6), Re-C-N 177(1).

The spectral and magnetic properties of 1 are consistent with $[\text{Re}(\text{CN})_7]^{3-}$ having the ${}^2\text{E}_1''$ ground state expected for a pentagonal bipyramidal complex with a low-spin d³ electron configuration. As measured using a SQUID magnetometer, the effective magnetic moment of 2.02 $\mu_{\rm B}$ at 298 K indicates an $S = 1/_2$ ground state with an average g value of 2.33. The X-band EPR spectrum of an undiluted powder of 1 at 20 K is axial with $g_{\parallel} = 3.66$ and $g_{\perp} =$ 1.59, and shows hyperfine splitting in the parallel component with $A_{\parallel} = 129$ G. The electronic absorption spectrum of 1 dissolved in acetonitrile differs little from the diffuse reflectance spectrum of the solid, suggesting that the complex maintains its pentagonal bipyramidal geometry in solution. These spectra display a band centered at 25 300 cm⁻¹ (395 nm) that can potentially be assigned to the lowest-energy spin-allowed component of the $e_1'' \rightarrow e_2'$ transition. The analogous transition in $[Mo(CN)_7]^{4-}$ occurs at the slightly lower energy of 24 900 cm⁻¹.¹²

Efforts to incorporate this new paramagnetic building unit into cyano-bridged solids are underway. As with [Mo(CN)7]4-, the anisotropy of the structure and **g** tensor of $[\text{Re}(\text{CN})_7]^{3-}$ can be anticipated to lend such solids highly anisotropic magnetic behavior.^{1g,4a} In aqueous solution, however, initial reactions led to a product in which the complex had spontaneously reduced to the diamagnetic 18-electron species [Re(CN)₇]⁴⁻. Heating a solution of 1 (60 mg, 55 µmol) and MnCl₂·4H₂O (60 mg, 0.30 mmol) in 3 mL of water at 85 °C for 5 days afforded 23 mg (61%) of [fac- $Mn(H_2O)_3$ [cis-Mn(H_2O)_2] [Re(CN)_7]·3H_2O (2) as light purple trapezoidal plate-shaped crystals.¹³ X-ray analysis¹¹ showed 2 to exhibit an intricate three-dimensional framework polymorphic to that in [mer-Mn(H₂O)₃][cis-Mn(H₂O)₂][Mo(CN)₇]•4H₂O.^{1g} Interestingly, attempts to prevent reduction of the rhenium by adding a variety of noncoordinating oxidants to the aqueous reaction mixture resulted instead in formation of [Re(CN)₈]³⁻.

Currently, $[\text{Re}(\text{CN})_8]^{3-}$ is still best prepared via oxidation of $[\text{Re}(\text{CN})_7]^{3-}$ in the presence of manganese. A mixture of **1** (62 mg, 0.056 mmol), KIO₄ (28 mg, 0.12 mmol), and MnCl₂·4H₂O

Figure 2. Structure of the square antiprismatic $[\text{Re}(\text{CN})_8]^{3-}$ complex in 4-2MeCN; ellipsoids are drawn at the 50% probability level. Closely approaching D_{4d} symmetry, the molecule resides on a crystallographic mirror plane that contains atoms N(4), C(4), Re(1), C(1), and N(1). Selected mean interatomic distances (Å) and angles (deg): Re–C 2.10(1), C–N 1.150(5), C–Re–C 76(3), 114.3(9), 142.5(3), Re–C–N 177.7(9).

(34 mg, 0.17 mmol) in 3 mL of deoxygenated water was heated at 85 °C for 24 h. The resulting solid was collected by filtration and washed with successive aliquots of water (3 × 10 mL) and THF (3 × 10 mL). The product was extracted into 2 mL of acetonitrile and, upon filtration, addition of 30 mL of ether gave 25 mg (35%) of (Bu₄N)₃[Re(CN)₈] (**3**) as a white precipitate.¹⁴ Attempts to carry out the preparation in the absence of manganese left [Re(CN)₇]³⁻ unreacted. Addition of K(CF₃SO₃) to a solution of **3** in acetonitrile afforded the water-soluble salt K₃[Re(CN)₈] (**4**) in essentially quantitative yield.¹⁵

Colorless rectangular plate-shaped crystals of **4**·2MeCN suitable for X-ray analysis¹¹ were obtained by layering a solution of **3** in acetonitrile onto a saturated solution of K(CF₃SO₃) in acetonitrile. Therein, [Re(CN)₈]³⁻ adopts the square antiprismatic structure shown in Figure 2. Using a previously devised method for analyzing eight-coordinate geometries,¹⁶ the minimal torsion angles, δ , between adjacent triangular faces of the C₈ polyhedron were determined to be 0.0°, 2.6°, 51.5°, and 51.8°. For comparison, an ideal square antiprism exhibits $\delta_1 = \delta_2 = 0^\circ$ and $\delta_3 = \delta_4 = 52.5^\circ$. Thus, [Re(CN)₈]³⁻ appears to be the most nearly perfect metal– octacyanide square antiprism yet encountered.¹⁷

The electronic absorption spectrum of 3 in acetonitrile is remarkably similar to spectra of the isoelectronic [M(CN)₈]⁴⁻ (M = Mo, W) complexes, suggesting that $[Re(CN)_8]^{3-}$ converts to a dodecahedral geometry in solution.¹⁸ Accordingly, the three bands centered at 436, 348, and 298 nm are tentatively assigned as spinallowed d-d transitions. Like [Mo(CN)8]4- and [W(CN)8]4-, $[\text{Re}(\text{CN})_8]^{3-}$ is also photoactive upon exposure to UV radiation, presumably oxidizing to the paramagnetic 17-electron species $[\text{Re}(\text{CN})_8]^{2-.19}$ Indeed, the cyclic voltammogram of **3** in acetonitrile displays a $[\text{Re}(\text{CN})_8]^{3-/2-}$ redox couple centered at $E_{1/2} = 0.999$ V $(\Delta E_{\rm p} = 110 \text{ mV})$ versus Cp₂Fe^{0/1+}. Thus, as observed for solids containing [Mo(CN)₈]^{4-,1j} cyano-bridged compounds incorporating [Re(CN)₈]³⁻ could potentially exhibit a large photomagnetic response. Efforts are underway to probe this possibility in a [(MeOH)₂₄Mn₉Re₆(CN)₄₈] cluster, obtained simply by substituting $[\text{Re}(\text{CN})_8]^{3-}$ for $[\text{Mo}(\text{CN})_8]^{3-}$ in the preparation of the analogous high-spin molecule [(MeOH)₂₄Mn₉Mo₆(CN)₄₈].^{2f}

Ultimately, it is hoped that the new cyanorhenate complexes disclosed here will be of utility in the design of magnetic materials with applications in information storage.^{2g}

Acknowledgment. This research was funded by NSF Grants No. CHE-0072691 and CHE-0111164, and DOE Grant No. DE-FG03-01ER15257. We thank Dr. L. G. Beauvais, Ms. J. J. Sokol, and Dr. F. J. Hollander for assistance.

Supporting Information Available: Figures depicting the EPR spectrum of **1** and the structure of **2**, and tables for the structures of **1**,

2, and 4·2MeCN (PDF). An X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Mallah, T.; Thiébaut, S.; Verdaguer, M.; Veillet, P. Science 1993, 262, 1554. (b) Entley, W. R.; Girolami, G. S. Science 1995, 268, 397. (c) Ferlay, S.; Mallah, T.; Ouahès, R.; Veillet, P.; Verdaguer, M. Nature 1995, 378, 701. (d) Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704. (e) Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283 and references therein. (f) Ohkoshi, S.; Yorozu, S.; Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Appl. Phys. Lett. 1997, 70, 1040. (g) Larionova, J.; Clérac, R.; Sanchiz, J.; Kahn, O.; Golhen, S.; Ouahab, L. J. Am. Chem. Soc. 1998, 120, 13088. (h) Hatlevik, Ø.; Buschmann, W. E.; Zhang, J.; Manson, J. L.; Miller, J. S. Adv. Mater. 1999, 121, 5593. (j) Rombaut, G.; Verelst, M.; Golhen, S.; Ouahab, L.; Mathonière, C.; Kahn, O. Inorg. Chem. 2001, 40, 1151. (k) Beauvais, L. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 12096.
- (2) (a) Mallah, T.; Auberger, C.; Verdaguer, M.; Veillet, P. J. Chem. Soc., Chem. Commun. 1995, 61. (b) Van Langenberg, K.; Batten, S. R.; Berry, K. J.; Hockless, D. C. R.; Moubaraki, B.; Murray, K. S. Inorg. Chem. 1997, 36, 5006. (c) Klausmeyer, K. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 1998, 37, 1694. (d) Heinrich, J. L.; Berseth, P. A.; Long, J. R. Chem. Commun. 1998, 1231. (e) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Fujishima, A.; Ohkoshi, S.; Hashimoto, K. J. Am. Chem. Soc. 2000, 122, 2952. (f) Larionova, J.; Gross, M.; Pilkington, M.; Andres, H.; Stoeckli-Evans, H.; Giidel, H. U.; Decurtins, S. Angew. Chem., Int. Ed. 2000, 39, 1605. (g) Sokol, J. J.; Hee, A. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 7656.
- (a) Entley, W. R.; Treadway, C. R.; Wilson, S. R.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119, 6251. (b) Buschmann, W. E.; Vazquez, C.; Ward, M. D.; Jones, N. C.; Miller, J. S. Chem. Commun. 1997, 409. (c) Buschmann, W. E.; Arif, A. M.; Miller, J. S. Angew. Chem., Int. Ed. 1998, 37, 781. (d) Beauvais, L. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 2110.
- (4) (a) Kahn, O. Philos. Trans. R. Soc. London, Ser. A 1999, 357, 3005. (b) Shores, M. P.; Sokol, J. J.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 2279.
- (5) Manoli, J.-M.; Potvin, C.; Brégeault, J.-M.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1980, 192.
- (6) Griffith, W. P.; Kiernan, P. M. J. Chem. Soc., Dalton Trans. 1978, 1411.
- (7) Clauss, D.; Lissner, A. Z. Anorg. Allg. Chem. 1958, 297, 300.
- (8) Trop, H. S.; Davison, A.; Carey, G. H.; DePamphilis, B. V.; Jones, A. G.; Davis, M. A. Inorg. Nucl. Chem. Lett. 1979, 41, 271.
- (9) Characterization of 1: Absorption spectrum (MeCN): λ_{max} (ϵ_M) 233 (8390), 258 (2280), 293 (2620), 315 (2030), 326 (1620, sh), 363 (899, sh), 378 (1200), 395 (1280) nm. IR: ν_{CN} 2112 (s), 2073 (s) cm⁻¹. μ_{eff} = 2.02 μ_{B} at 298 K. ES⁻MS (MeCN): m/z 853.5 ($\{(Bu_4N)_2[Re(CN)_7]\}^-$). Anal. Calcd for $C_{55}H_{108}N_{10}Re: C$, 60.29; H, 9.94; N, 12.78. Found: C, 60.52; H, 9.73; N, 12.80.
- (10) The analogous couple for a solution of K₄[Re(CN)₇]·H₂O in deoxygenated water occurs at E_{1/2} = 0.643 V versus NHE: Marty, W.; Renaud, P.; Gampp, H. *Helv. Chim. Acta* **1987**, 70, 375.
- (11) Crystal and structure refinement parameters. 1: $C_{55}H_{108}N_{10}Re, T = 152$ K, $P_{21/c}, Z = 8, a = 22.9918(3)$ Å, b = 23.0860(3)Å, c = 23.0773(5)Å, $\beta = 90.755(1)^{\circ}$, V = 12248.1(3)Å³, $d_{calc} = 1.188$ g/cm³, $R_1 = 0.0541$, $wR_2 = 0.1250$. 2: $C_7H_{16}Mn_3N_{O8}Re, T = 136$ K, P1, Z = 2, a = 7.5397(3)Å, b = 12.5924(6)Å, c = 19.737(1)Å, $\alpha = 78.868(1)^{\circ}$, $\beta = 87.873(2)^{\circ}$, $\gamma = 88.026(2)^{\circ}$, V = 1836.6(2)Å³, $d_{calc} = 1.125$ g/cm³, $R_1 = 0.0545$, $wR_2 = 0.1358$. 4:2MeCN: $C_{12}H_6K_3N_{10}Re, T = 134$ K, *Pmma*, Z = 4, a = 17.2149(5)Å, b = 10.5170(3)Å, c = 9.3391(3)Å, V = 1690.84(9)Å³, $d_{calc} = 2.333$ g/cm³, $R_1 = 0.0194$, $wR_2 = 0.0438$. Data were collected on a Siemens SMART diffractometer using graphite monochromated Mo Ka ($\lambda = 0.71073$ Å) radiation. Structures were solved by direct methods and refined against all data using SHELXTL 5.0.
- (12) Rossman, G. R.; Tsay, F.-D.; Gray, H. B. Inorg. Chem. 1973, 12, 824.
- (13) Characterization of **2**. IR: ν_{CN} 2103 (s), 2058 (s) cm⁻¹. $\mu_{eff} = 8.35 \,\mu_B$ at 298 K. Anal. Calcd for C₇H₁₆Mn₂N₇O₈Re: C, 13.48; H, 2.63; N, 16.03. Found: C, 13.79; H, 2.59; N, 16.03.
- (14) Characterization of **3**. Absorption spectrum (MeCN): λ_{max} (ϵ_{M}) 196 (13200), 231 (sh), 252 (sh), 298 (168), 348 (76), 436 (22) nm. IR: ν_{CN} 2150 (s), 2135 (s) cm⁻¹. ES⁻-MS (MeCN): m/z 879.6 ({(Bu₄N)₂[Re-(CN)₈]⁻). Anal. Calcd for C₅₆H₁₀₈N₁₁Re: C, 59.90; H, 9.70; N, 13.73. Found: C, 59.97; H, 9.81; N, 13.72.
- (15) Characterization of **4**. IR: ν_{CN} 2155 (s), 2148 (s) cm⁻¹. ES⁻⁻MS (MeCN): m/z 472.9 ({(K)₂[Re(CN)₈]⁻). Anal. Calcd for C₈K₃N₈Re: C, 18.75; H, 0.00; N, 21.88. Found: C, 18.97; H, < 0.20; N, 21.51.
- (16) Porai-Koshits, M. A.; Aslanov, L. A. Zh. Strukt. Khim. 1972, 13, 266.
 (17) Leipoldt, J. G.; Basson, S. S.; Roodt, A. Adv. Inorg. Chem. 1993, 40,
- 241 and references therein.(18) (a) Perumareddi, J. R.; Liehr, A. D.; Adamson, A. W. J. Am. Chem. Soc.
- **1963**, 85, 249. (b) Pribush, R. A.; Archer, R. D. *Inorg. Chem.* **1974**, *13*, 2556.
- (19) (a) Bettelheim, A.; Shirom, M. Chem. Phys. Lett. 1971, 9, 166. (b) Vogler, A.; Losse, W.; Kunkely, H. J. Chem. Soc., Chem. Commun. 1979, 187.

JA029795V