New Cyanometalate Building Units: Synthesis and Characterization of $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ and $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$

Miriam V. Bennett and Jeffrey R. Long*
Department of Chemistry, University of California, Berkeley, California 94720-1460

Received December 18, 2002 ; E-mail: jlong@cchem.berkeley.edu

Abstract

The past decade has witnessed an extraordinary revival of transition metal-cyanide chemistry, fueled largely by interest in the magnetic and photomagnetic properties of cyano-bridged solids ${ }^{1}$ and molecules. ${ }^{2}$ The preparations for many of these compounds rely upon the use of homoleptic cyanometalate complexes as building units. To give but two examples, octahedral $\left[\mathrm{M}(\mathrm{CN})_{6}\right]^{n-}$ complexes are employed in the synthesis of cubic Prussian bluetype solids with adjustable magnetic properties, ${ }^{1 a-f, h, i}$ while $\left[\mathrm{M}(\mathrm{CN})_{8}\right]^{3-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ complexes can be incorporated into high-nuclearity clusters with ground states of record high spin. ${ }^{2 e, f}$ Thus, the synthesis of new cyanometalate complexes stands as a potent means of extending the range of accessible properties in cyano-bridged compounds. ${ }^{3}$ Moreover, second- and third-row transition-metal complexes, which have been less thoroughly investigated, can be expected to deliver stronger magnetic exchange coupling and greater magnetic anisotropy to the materials. ${ }^{4}$ With these factors in mind, we chose to explore the synthesis of new homoleptic rhenium-cyanide complexes.

To date, only one such complex has been structurally verified: pentagonal bipyramidal $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{4-} .{ }^{5}$ The most oft-cited preparation for this diamagnetic molecule is somewhat inconvenient, involving the reaction between $\mathrm{K}_{2}\left[\mathrm{ReCl}_{6}\right]$ and KCN at $250{ }^{\circ} \mathrm{C}$ in a KSeCN melt. ${ }^{6}$ Although the early literature contains many purported examples of other rhenium-cyanide complexes, nearly all of these formulations are now in doubt, ${ }^{6}$ with the possible exception of $\left[\operatorname{Re}(\mathrm{CN})_{6}\right]^{5-.}$. Here, we report the syntheses, structures, and spectral properties of two additional species: $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ and $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$.

The synthesis of $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ proceeds through a simple ligand exchange reaction. Under a pure dinitrogen atmosphere, solid $\left(\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{CN}(1.2 \mathrm{~g}, 4.5 \mathrm{mmol})$ was added to a solution of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}-$ $\left[\operatorname{ReCl}_{6}\right]^{8}(0.55 \mathrm{~g}, 0.62 \mathrm{mmol})$ in 2.0 mL of DMF. The mixture was stirred and heated at $85^{\circ} \mathrm{C}$ for 3 days to give a yellow solid, which was collected by filtration and washed with successive aliquots of THF ($3 \times 10 \mathrm{~mL}$) and ether ($3 \times 5 \mathrm{~mL}$). Diffusion of THF vapor into a concentrated DMF solution of the solid afforded 0.52 g (76%) of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{3}\left[\operatorname{Re}(\mathrm{CN})_{7}\right](\mathbf{1})$ as yellow block-shaped crystals. ${ }^{9}$ Compound $\mathbf{1}$ is stable in air both in the solid state and in nonprotic solvents, but gradually decomposes over the course of several days in oxygenated water. In contrast, $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{4-}$ rapidly oxidizes in air. ${ }^{6}$ The cyclic voltammogram of $\mathbf{1}$ in acetonitrile displays a $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-/ 4-}$ redox couple centered at $E_{1 / 2}=-1.06 \mathrm{~V}\left(\Delta E_{\mathrm{p}}=\right.$ 140 mV) versus $\mathrm{Cp}_{2} \mathrm{Fe}^{0 / 1+} .{ }^{10}$

X-ray analysis ${ }^{11}$ of a single crystal of $\mathbf{1}$ revealed $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ to adopt the pentagonal bipyramidal geometry depicted in Figure 1. The complex closely approaches $D_{5 h}$ symmetry, with the carbon atoms of the five equatorial cyanide ligands $(\mathrm{C}(3)-\mathrm{C}(7))$ forming a nearly perfect equilateral pentagon. Its $\mathrm{Re}-\mathrm{C}$ distances, which fall within the range $2.064(10)-2.123(11) \AA$, are comparable to those observed for $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{4-}$ in $\mathrm{K}_{4}\left[\operatorname{Re}(\mathrm{CN})_{7}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.077(3)-$ 2.099(6) A). ${ }^{5}$

Figure 1. Structure of a pentagonal bipyramidal $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ complex in 1; ellipsoids are drawn at the 40% probability level. Selected mean interatomic distances (\AA) and angles (deg) for two crystallographically independent complexes: $\mathrm{Re}-\mathrm{C} 2.09(2), \mathrm{C}-\mathrm{N} 1.17(1), \mathrm{C}_{\mathrm{eq}}-\mathrm{Re}-\mathrm{C}_{\mathrm{eq}} 72.4(9)$, $\mathrm{C}_{\mathrm{ax}}-\operatorname{Re}-\mathrm{C}_{\mathrm{eq}} 90(4), \mathrm{C}_{\mathrm{ax}}-\mathrm{Re}-\mathrm{C}_{\mathrm{ax}}$ 178.6(6), $\mathrm{Re}-\mathrm{C}-\mathrm{N} 177(1)$.

The spectral and magnetic properties of $\mathbf{1}$ are consistent with $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ having the ${ }^{2} \mathrm{E}_{1}{ }^{\prime \prime}$ ground state expected for a pentagonal bipyramidal complex with a low-spin d^{3} electron configuration. As measured using a SQUID magnetometer, the effective magnetic moment of $2.02 \mu_{\mathrm{B}}$ at 298 K indicates an $S=1 / 2$ ground state with an average g value of 2.33 . The X-band EPR spectrum of an undiluted powder of $\mathbf{1}$ at 20 K is axial with $g_{\|}=3.66$ and $g_{\perp}=$ 1.59 , and shows hyperfine splitting in the parallel component with $A_{\|}=129 \mathrm{G}$. The electronic absorption spectrum of $\mathbf{1}$ dissolved in acetonitrile differs little from the diffuse reflectance spectrum of the solid, suggesting that the complex maintains its pentagonal bipyramidal geometry in solution. These spectra display a band centered at $25300 \mathrm{~cm}^{-1}(395 \mathrm{~nm})$ that can potentially be assigned to the lowest-energy spin-allowed component of the $\mathrm{e}_{1}{ }^{\prime \prime} \rightarrow \mathrm{e}_{2}{ }^{\prime}$ transition. The analogous transition in $\left[\mathrm{Mo}(\mathrm{CN})_{7}\right]^{4-}$ occurs at the slightly lower energy of $24900 \mathrm{~cm}^{-1} .{ }^{12}$

Efforts to incorporate this new paramagnetic building unit into cyano-bridged solids are underway. As with $\left[\mathrm{Mo}(\mathrm{CN})_{7}\right]^{4-}$, the anisotropy of the structure and \mathbf{g} tensor of $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ can be anticipated to lend such solids highly anisotropic magnetic behavior. ${ }^{\text {lg,4a }}$ In aqueous solution, however, initial reactions led to a product in which the complex had spontaneously reduced to the diamagnetic 18 -electron species $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{4-}$. Heating a solution of $\mathbf{1}(60 \mathrm{mg}, 55 \mu \mathrm{~mol})$ and $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(60 \mathrm{mg}, 0.30 \mathrm{mmol})$ in 3 mL of water at $85^{\circ} \mathrm{C}$ for 5 days afforded 23 mg (61\%) of [fac$\left.\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left[\right.$ cis $\left.-\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{Re}(\mathrm{CN})_{7}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (2) as light purple trapezoidal plate-shaped crystals. ${ }^{13}$ X-ray analysis ${ }^{11}$ showed 2 to exhibit an intricate three-dimensional framework polymorphic to that in $\left[\right.$ mer $\left.-\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left[\right.$ cis $\left.-\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{Mo}(\mathrm{CN})_{7}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. ${ }^{1 \mathrm{~g}}$ Interestingly, attempts to prevent reduction of the rhenium by adding a variety of noncoordinating oxidants to the aqueous reaction mixture resulted instead in formation of $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$.
Currently, $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ is still best prepared via oxidation of $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ in the presence of manganese. A mixture of $\mathbf{1}$ (62 $\mathrm{mg}, 0.056 \mathrm{mmol}$), $\mathrm{KIO}_{4}(28 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Figure 2. Structure of the square antiprismatic $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ complex in $4 \cdot 2 \mathrm{MeCN}$; ellipsoids are drawn at the 50% probability level. Closely approaching $D_{4 d}$ symmetry, the molecule resides on a crystallographic mirror plane that contains atoms $\mathrm{N}(4), \mathrm{C}(4), \operatorname{Re}(1), \mathrm{C}(1)$, and $\mathrm{N}(1)$. Selected mean interatomic distances (\AA) and angles (deg): $\mathrm{Re}-\mathrm{C} 2.10(1), \mathrm{C}-\mathrm{N} 1.150(5)$, $\mathrm{C}-\operatorname{Re}-\mathrm{C} 76(3), 114.3(9), 142.5(3), \operatorname{Re}-\mathrm{C}-\mathrm{N} 177.7(9)$.
($34 \mathrm{mg}, 0.17 \mathrm{mmol}$) in 3 mL of deoxygenated water was heated at $85{ }^{\circ} \mathrm{C}$ for 24 h . The resulting solid was collected by filtration and washed with successive aliquots of water ($3 \times 10 \mathrm{~mL}$) and THF $(3 \times 10 \mathrm{~mL})$. The product was extracted into 2 mL of acetonitrile and, upon filtration, addition of 30 mL of ether gave 25 mg (35%) of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{3}\left[\operatorname{Re}(\mathrm{CN})_{8}\right](\mathbf{3})$ as a white precipitate. ${ }^{14}$ Attempts to carry out the preparation in the absence of manganese left $\left[\operatorname{Re}(\mathrm{CN})_{7}\right]^{3-}$ unreacted. Addition of $\mathrm{K}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ to a solution of $\mathbf{3}$ in acetonitrile afforded the water-soluble salt $\mathrm{K}_{3}\left[\operatorname{Re}(\mathrm{CN})_{8}\right]$ (4) in essentially quantitative yield. ${ }^{15}$

Colorless rectangular plate-shaped crystals of $4 \cdot 2 \mathrm{MeCN}$ suitable for X-ray analysis ${ }^{11}$ were obtained by layering a solution of $\mathbf{3}$ in acetonitrile onto a saturated solution of $\mathrm{K}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ in acetonitrile. Therein, $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ adopts the square antiprismatic structure shown in Figure 2. Using a previously devised method for analyzing eight-coordinate geometries, ${ }^{16}$ the minimal torsion angles, δ, between adjacent triangular faces of the C_{8} polyhedron were determined to be $0.0^{\circ}, 2.6^{\circ}, 51.5^{\circ}$, and 51.8°. For comparison, an ideal square antiprism exhibits $\delta_{1}=\delta_{2}=0^{\circ}$ and $\delta_{3}=\delta_{4}=52.5^{\circ}$. Thus, $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ appears to be the most nearly perfect metaloctacyanide square antiprism yet encountered. ${ }^{17}$

The electronic absorption spectrum of $\mathbf{3}$ in acetonitrile is remarkably similar to spectra of the isoelectronic $\left[\mathrm{M}(\mathrm{CN})_{8}\right]^{4-}$ (M $=\mathrm{Mo}, \mathrm{W})$ complexes, suggesting that $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ converts to a dodecahedral geometry in solution. ${ }^{18}$ Accordingly, the three bands centered at 436,348 , and 298 nm are tentatively assigned as spinallowed $\mathrm{d}-\mathrm{d}$ transitions. Like $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{4-}$ and $\left[\mathrm{W}(\mathrm{CN})_{8}\right]^{4-}$, $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ is also photoactive upon exposure to UV radiation, presumably oxidizing to the paramagnetic 17 -electron species $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{2-} .{ }^{19}$ Indeed, the cyclic voltammogram of $\mathbf{3}$ in acetonitrile displays a $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-12-}$ redox couple centered at $E_{1 / 2}=0.999 \mathrm{~V}$ $\left(\Delta E_{\mathrm{p}}=110 \mathrm{mV}\right)$ versus $\mathrm{Cp}_{2} \mathrm{Fe}^{0 / 1+}$. Thus, as observed for solids containing $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{4-},{ }^{1 \mathrm{j}}$ cyano-bridged compounds incorporating $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ could potentially exhibit a large photomagnetic response. Efforts are underway to probe this possibility in a $\left[(\mathrm{MeOH})_{24} \mathrm{Mn}_{9} \mathrm{Re}_{6}(\mathrm{CN})_{48}\right]$ cluster, obtained simply by substituting $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ for $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{3-}$ in the preparation of the analogous high-spin molecule $\left[(\mathrm{MeOH})_{24} \mathrm{Mn}_{9} \mathrm{Mo}_{6}(\mathrm{CN})_{48}\right]$. ${ }^{2 \mathrm{f}}$

Ultimately, it is hoped that the new cyanorhenate complexes disclosed here will be of utility in the design of magnetic materials with applications in information storage. ${ }^{2 g}$

Acknowledgment. This research was funded by NSF Grants No. CHE-0072691 and CHE-0111164, and DOE Grant No. DE-FG03-01ER15257. We thank Dr. L. G. Beauvais, Ms. J. J. Sokol, and Dr. F. J. Hollander for assistance.

Supporting Information Available: Figures depicting the EPR spectrum of $\mathbf{1}$ and the structure of $\mathbf{2}$, and tables for the structures of $\mathbf{1}$,

2, and $\mathbf{4} \cdot \mathbf{2 M e C N}$ (PDF). An X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Mallah, T.; Thiébaut, S.; Verdaguer, M.; Veillet, P. Science 1993, 262, 1554. (b) Entley, W. R.; Girolami, G. S. Science 1995, 268, 397. (c) Ferlay, S.; Mallah, T.; Ouahès, R.; Veillet, P.; Verdaguer, M. Nature 1995, 378, 701. (d) Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704. (e) Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283 and references therein. (f) Ohkoshi, S.; Yorozu, S.; Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Appl. Phys. Lett. 1997, 70, 1040. (g) Larionova, J.; Clérac, R.; Sanchiz, J.; Kahn, O.; Golhen, S.; Ouahab, L. J. Am. Chem. Soc. 1998, 120, 13088. (h) Hatlevik, Ø.; Buschmann, W. E.; Zhang, J.; Manson, J. L.; Miller, J. S. Adv. Mater. 1999, 11, 914. (i) Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593. (j) Rombaut, G.; Verelst, M.; Golhen, S.; Ouahab, L.; Mathonière, C.; Kahn, O. Inorg. Chem. 2001, 40, 1151. (k) Beauvais, L. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 12096.
(2) (a) Mallah, T.; Auberger, C.; Verdaguer, M.; Veillet, P. J. Chem. Soc., Chem. Commun. 1995, 61. (b) Van Langenberg, K.; Batten, S. R.; Berry, K. J.; Hockless, D. C. R.; Moubaraki, B.; Murray, K. S. Inorg. Chem. 1997, 36, 5006. (c) Klausmeyer, K. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 1998, 37, 1694. (d) Heinrich, J. L.; Berseth, P. A.; Long, J. R. Chem. Commun. 1998, 1231. (e) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Fujishima, A.; Ohkoshi, S.; Hashimoto, K. J. Am. Chem. Soc. 2000, 122, 2952. (f) Larionova, J.; Gross, M.; Pilkington, M.; Andres, H.; Stoeckli-Evans, H.; Güdel, H. U.; Decurtins, S. Angew. Chem., Int. Ed. 2000, 39, 1605. (g) Sokol, J. J.; Hee, A. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 7656.
(3) (a) Entley, W. R.; Treadway, C. R.; Wilson, S. R.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119, 6251. (b) Buschmann, W. E.; Vazquez, C.; Ward, M. D.; Jones, N. C.; Miller, J. S. Chem. Commun. 1997, 409. (c) Buschmann, W. E.; Arif, A. M.; Miller, J. S. Angew. Chem., Int. Ed. 1998, 37, 781. (d) Beauvais, L. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 2110.
(4) (a) Kahn, O. Philos. Trans. R. Soc. London, Ser. A 1999, 357, 3005. (b) Shores, M. P.; Sokol, J. J.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 2279.
(5) Manoli, J.-M.; Potvin, C.; Brégeault, J.-M.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1980, 192.
(6) Griffith, W. P.; Kiernan, P. M. J. Chem. Soc., Dalton Trans. 1978, 1411.
(7) Clauss, D.; Lissner, A. Z. Anorg. Allg. Chem. 1958, 297, 300.
(8) Trop, H. S.; Davison, A.; Carey, G. H.; DePamphilis, B. V.; Jones, A. G.; Davis, M. A. Inorg. Nucl. Chem. Lett. 1979, 41, 271.
(9) Characterization of 1: Absorption spectrum $(\mathrm{MeCN}): \lambda_{\max }\left(\epsilon_{\mathrm{M}}\right) 233$ (8390), 258 (2280), 293 (2620), 315 (2030), 326 ($1620, \mathrm{sh}$), 363 (899, sh), $378(1200), 395(1280) \mathrm{nm}$. IR: $v_{\mathrm{CN}} 2112(\mathrm{~s}), 2073(\mathrm{~s}) \mathrm{cm}^{-1} \cdot \mu_{\text {eff }}=$ $2.02 \mu_{\mathrm{B}}$ at $298 \mathrm{~K} . \mathrm{ES}^{-}-\mathrm{MS}(\mathrm{MeCN}): m / z 853.5\left(\left\{\left(\mathrm{Bu} \mathrm{H}_{4}\right)_{2}\left[\operatorname{Re}(\mathrm{CN})_{7}\right]\right\}^{-}\right)$. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{~N}_{10}$ Re: C, $60.29 ; \mathrm{H}, 9.94 ; \mathrm{N}, 12.78$. Found: C, 60.52; H, 9.73; N, 12.80.
(10) The analogous couple for a solution of $\mathrm{K}_{4}\left[\mathrm{Re}(\mathrm{CN})_{7}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in deoxygenated water occurs at $E_{1 / 2}=0.643$ V versus NHE: Marty, W.; Renaud, P.; Gampp, H. Helv. Chim. Acta 1987, 70, 375.
(11) Crystal and structure refinement parameters. 1: $\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{~N}_{10} \mathrm{Re}, T=152$ $\mathrm{K}, P 2{ }_{1} / c, Z=8, a=22.9918$ (3) $\AA, b=23.0860$ (3) \AA A, $c=23.0773(5)$ $\AA, \beta=90.755(1)^{\circ}, V=12248.1(3) \AA^{3}, d_{\text {calc }}=1.188 \mathrm{~g} / \mathrm{cm}^{3}, R_{1}=0.0541$, ${ }_{\mathrm{w}} R_{2}=0.1250$. 2: $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{Mn}_{2} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{Re}, T=136 \mathrm{~K}, P \overline{1}, Z=2, a=$ $7.5397(3) \AA, b=12.5924(6) \AA, c=19.737(1) \AA, \alpha=78.868(1)^{\circ}, \beta=$ $87.873(2)^{\circ}, \gamma=88.026(2)^{\circ}, V=1836.6(2) \AA^{3}, d_{\text {calc }}=1.125 \mathrm{~g} / \mathrm{cm}^{3}, R_{1}=$ 0.0545 , $w R_{2}=0.1358 .4 \cdot 2 \mathrm{MeCN}: \mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~K}_{3} \mathrm{~N}_{10} \mathrm{Re}, T=134 \mathrm{~K}$, Pnma, Z $=4, a=17.2149(5) \AA, b=10.5170(3) \AA, c=9.3391(3) \AA, V=$ $1690.84(9) \AA^{3}, d_{\text {calc }}=2.333 \mathrm{~g} / \mathrm{cm}^{3}, R_{1}=0.0194, \mathrm{w} R_{2}=0.0438$. Data were collected on a Siemens SMART diffractometer using graphite monochromated Mo $\mathrm{K} \alpha(\lambda=0.71073$ A) radiation. Structures were solved by direct methods and refined against all data using SHELXTL 5.0.
(12) Rossman, G. R.; Tsay, F.-D.; Gray, H. B. Inorg. Chem. 1973, 12, 824.
(13) Characterization of 2. IR: $v_{\mathrm{CN}} 2103(\mathrm{~s}), 2058(\mathrm{~s}) \mathrm{cm}^{-1} \cdot \mu_{\mathrm{eff}}=8.35 \mu_{\mathrm{B}}$ at 298 K. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{Mn}_{2} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{Re}: \mathrm{C}, 13.48 ; \mathrm{H}, 2.63$; N, 16.03. Found: C, 13.79; H, 2.59; N, 16.03.
(14) Characterization of 3. Absorption spectrum (MeCN): $\lambda_{\text {max }}\left(\epsilon_{\mathrm{M}}\right) 196$ (13200), 231 (sh), 252 (sh), 298 (168), 348 (76), 436 (22) nm. IR: v_{CN} 2150 (s), 2135 (s) $\mathrm{cm}^{-1} . \mathrm{ES}^{-}-\mathrm{MS}(\mathrm{MeCN}): m / z 879.6\left(\left\{\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}[\mathrm{Re}-\right.\right.$ $\left.\left.(\mathrm{CN})_{8}\right]\right\}^{-}$). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{~N}_{11} \mathrm{Re}: \mathrm{C}, 59.90 ; \mathrm{H}, 9.70 ; \mathrm{N}, 13.73$. Found: C, 59.97; H, 9.81; N, 13.72 .
(15) Characterization of 4. IR: $v_{\mathrm{CN}} 2155$ (s), 2148 (s) cm^{-1}. ES ${ }^{-}$-MS $(\mathrm{MeCN}): m / z 472.9\left(\left\{(\mathrm{~K})_{2}\left[\operatorname{Re}(\mathrm{CN})_{8}\right]\right\}^{-}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{~K}_{3} \mathrm{~N}_{8} \mathrm{Re}: \mathrm{C}$, 18.75; H, 0.00 ; N, 21.88. Found: C, 18.97; H, $<0.20 ;$ N, 21.51.
(16) Porai-Koshits, M. A.; Aslanov, L. A. Zh. Strukt. Khim. 1972, 13, 266.
(17) Leipoldt, J. G.; Basson, S. S.; Roodt, A. Adv. Inorg. Chem. 1993, 40, 241 and references therein.
(18) (a) Perumareddi, J. R.; Liehr, A. D.; Adamson, A. W. J. Am. Chem. Soc. 1963, 85, 249. (b) Pribush, R. A.; Archer, R. D. Inorg. Chem. 1974, 13, 2556.
(19) (a) Bettelheim, A.; Shirom, M. Chem. Phys. Lett. 1971, 9, 166. (b) Vogler, A.; Losse, W.; Kunkely, H. J. Chem. Soc., Chem. Commun. 1979, 187.

JA029795V

